专利分类
专利分类

LDPC译码方法及译码器专利

专利号:201610011155.4

销售价
1500
LDPC译码方法及译码器专利二维码
  • 累计销量0
  • 浏览次数50
  • 累计评论0
首页

专利名称:LDPC译码方法及译码器

技术领域:LDPC译码方法,译码器

IPC主分类号:H03M13/11

申请号:CN201610011155.4

公开日:2016-06-15

说明书

LDPC译码方法及译码器

技术领域

[0001] 本发明涉及数字信息传输领域,特别涉及一种LDPC译码方法及译码器。

背景技术

[0002] LDPC码(Low Density Parity Check Code)最初是由Galleger在20世纪60年代提出,由于当时技术有限,缺乏可行的译码算法,LDPC码在提出之后的30多年里基本被人忽略。在此期间,学者们对于LDPC码的研究也从未止步。Tanner在1981年推广了LDPC码,并给出了LDPC码的图表示,即Tanner图。在1993年,Berrou等人发现了Turbo码。在此基础上,1995年前后Mackey和Neal等人对LDPC码重新进行了研究,提出了可行的译码算法,进一步发现了LDPC码所具有的良好性能,它不仅具有能逼近Shannon限的良好性能,而且译码复杂度低,结构灵活。最近十几年,研究人员在LDPC码的研究上也取得了突破性的进展。目前,LDPC码的相关技术已日趋成熟,已开始投入商用,被广泛应用于深空通信、光纤通信、卫星数字视频和音频广播等领域。同时,LDPC码也进入了无线通信等相关领域的标准,基于LDPC码的编码方案已经被下一代卫星数字视频广播标准DVB-S2采纳。
[0003] LDPC码的译码算法对LDPC码的译码性能起着至关重要的作用,对于同样的LDPC码,采用不同的译码算法,可以获得不同的译码性能。LDPC码的译码可分为以下三大类:硬判决译码、软判决译码和基于可靠度的译码。近年来,基于可靠度的译码算法引起了学者们的重视,这类算法是在硬判决的基础上引入了可靠度信息以及迭代译码,能有效兼顾译码复杂度、收敛和译码性能。典型的基于可靠度的译码算法包括加权一步大数逻辑(Weighted OSMLGD)译码、加权比特翻转法等。
[0004] 近期的研究成果包括,2009年Huang等人提出的基于可靠度的迭代大数逻辑译码算法(RBI-MLGD),该算法基于可靠度信息,并通过有效迭代,提高了译码性能。在此基础上,Chen等人通过引入了修正因子,于2012年提出了修正版的基于可靠度的迭代大数逻辑译码算法(MRBI-MLGD)进一步获得了译码性能上的提高。RBI-MLGD算法具备良好的应用前景,吸引了学者们的广泛关注。Ngatched和Zhang等人也在此基础上提出了各自的修正算法。
[0005] 上述几种基于可靠度的译码算法,都需要引入一种特殊的外信息,这种外信息是结合当前码位信息和伴随式信息来获得的。这个过程会产生额外的运算量,对于长码长、大列重的大数逻辑可译码,其运算量不容忽视。要在RBI-MLGD算法的译码性能、译码复杂度、硬件实现的难易程度上取有效折中,目前仍然没有很好的办法。
[0006] 公开于该背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已为本领域一般技术人员所公知的现有技术。

发明内容

[0007] 本发明的目的在于提供一种LDPC译码方法及译码器,其联合了非线性预处理方法,可在保持优良译码性能的前提下,有效降低译码复杂度。
[0008] 为实现上述目的,根据本发明的一方面,提供了一种LDPC译码方法,包括以下步骤:获取信道信息,对所述信道信息以定量化比特数进行非线性量化预处理获得可靠度信息;设定最大迭代次数,开始迭代:对所述可靠度信息进行硬判决处理获得硬判决向量,并根据所述硬判决向量获取对应的符号向量;将所述符号向量输入效验矩阵进行验证,若验证成功,则结束迭代输出译码;若验证失败,则判断是否超过设定的最大迭代次数,若超过,退出迭代;若未超过,更新所述可靠度信息进行下一次迭代。
[0009] 优选地,上述技术方案中,所述对所述信道信息以定量化比特数进行非线性量化预处理获得可靠度信息,具体如下:
[0010] 接收信道信息yj,确定量化比特数b,采用公式(1)进行量化预处理:
[0011]
[0012] 其中,0≤j≤n-1,p=0,1,2,...,2b-3,b取值为3,4或5,r为可调的量化解析度参数,yth为正方向的最大接收电平,qj为预处理后的整数可靠度信息,范围在[-(2b-1),+(2b-1)]之间。
[0013] 优选地,上述技术方案中,需对所述量化解析度参数r进行优化,具体如下:对于不同的r值,基于信道信息yj的分布特性,计算信道信息yj的概率分布序列,确定量化解析度参数r的初始量化间隔和终止量化间隔,根据该间隔和所述概率分布序列得到最优的量化解析度参数r。
[0014] 优选地,上述技术方案中,将所述符号向量输入效验矩阵进行验证具体如下:用校验矩阵和输入的所述符号向量进行乘积并模2加,如满足验证条件,则译码成功,反之,则译码失败。
[0015] 优选地,上述技术方案中,更新所述可靠度信息具体如下:由校验节点对所述符号向量校验以获取对应变量节点的伴随式信息,将所述伴随式信息传输至变量节点;由变量节点统计出校验正确的伴随式信息个数和校验失败的伴随式信息个数,根据校验正确和校验失败的伴随式信息个数和更新所述可靠度信息。
[0016] 为实现上述目的,根据本发明的一方面,提供了一种LDPC译码器,包括:预处理模块,用于获取信道信息,对所述信道信息以定量化比特数进行非线性量化预处理获得可靠度信息;迭代译码模块,用于迭代设定最大迭代次数,并进行迭代处理;硬判决模块,用于对所述可靠度信息进行硬判决处理获得硬判决向量,并根据所述硬判决向量获取对应的符号向量;译码校验模块,用于将所述符号向量输入效验矩阵进行验证,若验证成功,则结束迭代输出译码;若验证失败,则判断是否超过设定的最大迭代次数,若超过,退出迭代;若未超过,由所述迭代译码模块更新所述可靠度信息进行下一次迭代。
[0017] 优选地,上述技术方案中,所述预处理模块中对所述信道信息以定量化比特数进行非线性量化预处理获得可靠度信息,具体如下:
[0018] 接收信道信息yj,确定量化比特数b,采用公式(2)进行量化预处理:
[0019]
[0020] 其中,0≤j≤n-1,p=0,1,2,...,2b-3,b取值为3,4或5,r为可调的量化解析度参数,yth为正方向的最大接收电平,qj为预处理后的整数可靠度信息,范围在[-(2b-1),+(2b-1)]之间。
[0021] 优选地,上述技术方案中,需对所述量化解析度参数r进行优化,具体如下:对于不同的r值,基于信道信息yj的分布特性,计算信道信息yj的概率分布序列,确定量化解析度参数r的初始量化间隔和终止量化间隔,根据该间隔和所述概率分布序列得到最优的量化解析度参数r。
[0022] 优选地,上述技术方案中,所述译码校验模块中将所述符号向量输入效验矩阵进行验证具体如下:用校验矩阵和输入的所述符号向量进行乘积并模2加,如满足验证条件,则译码成功,反之,则译码失败。
[0023] 优选地,上述技术方案中,由所述迭代译码模块更新所述可靠度信息具体如下:由校验节点对所述符号向量校验以获取对应变量节点的伴随式信息,将所述伴随式信息传输至变量节点;由变量节点统计出校验正确的伴随式信息个数和校验失败的伴随式信息个数,根据校验正确和校验失败的伴随式信息个数和更新所述可靠度信息。
[0024] 与现有技术相比,本发明具有如下有益效果:
[0025] 1.本发明对于来自信道的接收信息,采用非线性预处理方法,可降低存储比特,保持优良译码性能的前提下,有效降低译码复杂度。
[0026] 2.在非线性预处理中,提出了量化解析度的参数优化策略,使得译码性能在给定的量化比特数b下实现最优化。
[0027] 3.在译码迭代处理中,变量节点只计算伴随式信息,避免了外信息的计算,减少了运算量,适用于大列重、长码长的LDPC码。
[0028] 4.在译码迭代处理中,只涉及逻辑操作和整数加法,可降低二元LDPC码的译码复杂度和硬件实现难度。
[0029] 本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
[0030] 下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。

附图说明

[0031] 附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。在附图中:
[0032] 图1是根据本发明LDPC译码方法的流程示意图。
[0033] 图2是根据本发明非线性预处理的参数优化流程图。
[0034] 图3是根据本发明不同量化解析度下概率分布序列图。
[0035] 图4是根据本发明信息预处理的实例。
[0036] 图5是根据本发明实现译码算法的误比特率性能示意图。
[0037] 图6是根据本发明LDPC译码器的结构图。

具体实施方式

[0038] 下面结合附图,对本发明的具体实施方式进行详细描述,但应当理解本发明的保护范围并不受具体实施方式的限制。
[0039] 如图1所示,根据本发明具体实施方式的一种LDPC译码方法,包括以下步骤:
[0040] 步骤S101:获取信道信息,对信道信息以定量化比特数进行非线性量化预处理获得可靠度信息;
[0041] 步骤S102:设定最大迭代次数,开始对可靠度信息迭代:
[0042] 步骤S103:对可靠度信息进行硬判决处理获得硬判决向量,并根据硬判决向量获取对应的符号向量;
[0043] 步骤S104:将所述符号向量输入效验矩阵进行验证,若验证成功,则结束迭代输出译码;若验证失败,则判断是否超过设定的最大迭代次数,若超过,退出迭代结束译码;若未超过,更新可靠度信息进行下一次迭代。
[0044] 该步骤中,具体地,将用校验矩阵和输入的所述符号向量进行乘积并模2加,如满足验证条件,则译码成功;反之,则译码失败,若判断未超过设定的最大迭代次数,由校验节点对符号向量校验以获取对应变量节点的伴随式信息,将伴随式信息传输至变量节点;由变量节点统计出校验正确的伴随式信息个数和校验失败的伴随式信息个数,根据校验正确和校验失败的伴随式信息个数和更新可靠度信息,进行下一次迭代。
[0045] 在步骤S101中,假定一个二元LDPC码C[n,k]由其稀疏奇偶校验矩阵H=[hi,j]m×n下的零空间定义。如果校验矩阵H具有恒定的行重ρ(每行非零元素个数固定为ρ)以及恒定的列重γ(每列非零元素个数固定为γ),则由此矩阵定义的是规则LDPC码。为了方便描述算法,我们定义两个下标集合:
[0046] 对校验矩阵H的每一行i,定义
[0047]
[0048] 对校验矩阵H的每一列j,定义
[0049]
[0050] 信息序列u=(u0,u1,...,uk-1)经编码后得到码字c=(c0,c1,...,cn-1)。c经调制后得到实数向量x=(x0,x1,...,xn-1)。对于二元域信号,可采用简单的一维BPSK映射规则,即xj=1-2cj,其中0≤j≤n-1。假设信号x通过加性高斯白噪声信道(Additive White Gussian Noise Channel,AWGNC)传输,接收信道信号为y=(y0,y1,y2,...,yn-1),yj=xj+nj,其中,ni2
~N(0,σ)是高斯白噪声的一个实现。接收到的实数信号yj经非线性预处理得到qj=(q0,q1,...,qn-1),作为初始的可靠度信息。
[0051] 进一步地,非线性量化预处理获得可靠度信息具体如下:
[0052] 接收信道信息yj,确定量化比特数b,采用公式(1)进行量化预处理:
[0053]
[0054] 其中,0≤j≤n-1,p=0,1,2,...,2b-3,b为量化比特数,可在系统内预先设定,一般取值为3,4或5,r为可调的量化解析度参数,yth为正方向的最大接收电平,qj为预处理后的整数可靠度信息,范围在[-(2b-1),+(2b-1)]之间。
[0055] 该实施例优选地非线性预处理方法不是传统意义上的线性处理,即对来自信道的接收信息yj做处理时,其量化间隔并不是等同的。非线性信息预处理方法,更符合接收信号yj的概率分布特性。对于先验等概的二元离散信源,假设已调信号经过加性高斯白噪声信号信道(AWGNC)进行传输,其接收信号的最佳判决门限为0。因此,在0附近处发生错误判决的概率非常大。在对小信号做信息预处理时,应当采取尽可能高的量化解析度。相应的,对于大信号而言,其译码信息已十分明确,则可以采用相对粗糙的量化解析度。为了进一步减少过载失真,本发明把信号的接收范围扩大到[-yth,yth]。r为量化解析度参数,可通过参数优化策略来获取。通过优化该参数,可得到所需的量化解析度,以适应译码器对不同接收信号的处理要求。对于正电平接收信号,信息预处理后的序列是yth为接收信号允许的最大接收电平。该序列满足这样一个特性,即越靠近判决门限0处,解析度越精细;越靠近大信号,解析度越粗糙。本发明采用的非线性预处理方法,可以达到节省量化比特,减小存储负荷的目的。
[0056] 量化比特b确定以后,因为量化解析度r是影响译码性能的重要因素,因此需要进行优化处理。该实施例中提出一个基于概率的优化策略,通过分析概率分布特性,均衡不同的量化间隔,选取合适的初始间隔 和终止间隔[r1yth,r0yth],以实现优化译码性能的效果,具体如下:
[0057] 假设二元信号调制后的信号为 经过AWGN信道传输后,得到两种概率密度函数,分别记为 和 在先验等概的情况下,两个概率密度函数的交点(判决门限)落在原点(y=0)处。假设信号落在从判决门限到量化电平值的概率为 可计算为:
[0058]
[0059] 其中, σ是信道噪声方差,可计算:
[0060]
[0061] 其中,R为码率,Eb/N0是系统信噪比(dB)。遍历 得到一个与解析度r和量化间隔有关的概率分布序列。
[0062]
[0063] 在参数优化时,需要计算概率序列P(r),从而得到某个解析度r下的初始间隔和终止间隔[r1yth,r0yth]。优化过程以获取最佳译码性能为目标,通过均衡量化间隔的分布特性来确定量化解析度的取值。对于一个码率为R的LDPC码,在某个信噪比下,优化解析度参数r的步骤如图2所示:
[0064] 步骤S201,选择量化比特b和最大允许电平yth。
[0065] 步骤S202,基于信道信息yj的分布特性,计算不同参数r下的概率序列P(r)。
[0066] 步骤S203,计算量化解析度参数r相应的初始量化间隔和终止量化间隔。
[0067] 步骤S204,选择某组量化间隔,使得译码性能最佳。
[0068] 步骤S205,基于该间隔下的分布特性和公式(2),得到优化的解析度参数r。
[0069] 下面,示出一个实例:以(255,175)码为例,其码率为0.686,允许的最大接收电平为yth=2.0,量化比特b=4,在不同参数r下的其概率分布序列如图3所示。仿真实验显示,初始量化间隔和终止量化间隔分别为[0,0.33]和[1.76,2]时,译码性能最优。因此,该分布序列可选为最优解,对应的解析度参数为r=0.88,其量化间隔分布如图4所示。
[0070] 在步骤S104中,更新可靠度信息具体为:假设 为第k次迭代译码过程中的硬判决符号向量。设 的可靠度为 在初始化时设置 其中
0≤j≤n-1。
[0071] 检验节点信息处理:对于0≤i≤m-1和j∈Ni,设 为从校验节点Ci传输至变量节点Vj的伴随式信息,采用如下方法获取:
[0072]
[0073] 基于可靠度的大数逻辑译码算法(Reliability-based iterative majority-logic decoding algorithm,以下简称RBI-MLGD),需要进行外信息的计算,方法如下:
[0074]
[0075] 假设与第j个变量节点对应,包含 的伴随式共有γj个,设校验成功的伴随式个数为 校验失败的伴随式个数为 即 由外信息计算公式(6)可看出,如果第i个伴随式 正确,则 与 取值相同;否则, 与 取值相反。
[0076] 在校验节点处,基于外信息的求和为:
[0077]
[0078] 在本发明译码方法中,把基于外信息的求和,转变为基于伴随式的求和:
[0079]
[0080] 在校验节点,只需要计算伴随式信息,然后把基于二进制的伴随式信息回传到相邻的变量节点,变量节点更新可靠度信息,方法如下:
[0081]
[0082] 基于以上描述,本发明提供的联合非线性信息预处理的大数逻辑译码方法流程图如图1所示,在给定量化比特数b的情况下,先通过参数优化策略找出最优的量化解析度参数r,对输入的信道信息先进行非线性预处理;将预处理后得到的信道信息作为可靠度信息初始值。设定最大迭代次数,开始迭代,对可靠度信息进行硬判决处理,获得硬判决符号向量,进行译码校验,判断译码是否结束,若未结束将硬判决符号向量传输至校验节点,由校验节点进行校验计算。随后,系统将这些伴随式信息传递至变量节点,由变量节点统计出校验正确的伴随式信息个数和校验失败的伴随式信息个数,并进行伴随式信息的加和,以更新可靠度信息,进行下一次迭代;具体译码方法可按以下具体步骤实现:
[0083] 输入:
[0084] 接收值y,量化比特数b,量化解析度r,最大迭代次数Imax;
[0085] 初始化:
[0086] 将接收信号y按非线性信息预处理量化为整数可靠度信息q,设置循环迭代次数k=0,初始化信息可靠度 0≤j≤n-1;
[0087] 译码迭代:
[0088] 当k≥Imax时,退出迭代过程,返回译码失败,否则执行以下步骤:
[0089] 步骤S301:计算硬判决序列 对0≤j≤n-1以下方法计算
[0090]
[0091] 步骤S302:对于0≤i≤m-1,计算伴随式信息
[0092] 步骤S303:如果s=(s0,s1,...,sm-1)=0,则译码成功,退出迭代过程;
[0093] 步骤S304:对于0≤j≤n-1,统计校验正确的伴随式信息个数 和检验错误的伴随式信息个数
[0094] 步骤S305:对于0≤j≤n-1,更新可靠度信息 方法如下:
[0095]
[0096] 步骤S306:令k步进一个单位;
[0097] 输出:
[0098] 译码成功后迭代过程结束,输出 作为译码结果输出码字。具体实施例子中,采用了基于欧氏几何方法构造(255,175)规则循环二元LDPC码进行仿真。译码分别使用RBI-MLGD译码算法、基于本发明的联合非线性信息预处理的LDPC译码方法和经典SPA算法。仿真结果误比特性能如图5所示,图5中显示在误比特率(BER)为10-4时,本发明提出的二元LDPC译码方法比RBI-MLGD有0.4dB的性能增益,与经典SPA算法相比有0.7dB的差距。然而本发明提出的联合非线性信息预处理的二元LDPC译码方法只涉及简单的整数加减和二进制逻辑操作,因此能大大降低译码复杂度,便于硬件实现。再者,本发明所需的量化比特数更低,能明显降低系统存储资源的消耗,具有较高的实用价值。
[0099] 根据该实施例的另一方面,如图6所示,提供了一种LDPC译码器,包括:
[0100] 预处理模块10,用于获取信道信息,对信道信息以定量化比特数进行非线性量化预处理获得可靠度信息;
[0101] 迭代译码模块20,用于迭代设定最大迭代次数,并进行迭代处理;
[0102] 硬判决模块30,用于对可靠度信息进行硬判决处理获得硬判决向量,并根据所述硬判决向量获取对应的符号向量;
[0103] 译码校验模块40,用于将所述符号向量输入效验矩阵进行验证,若验证成功,则结束迭代输出译码;若验证失败,则判断是否超过设定的最大迭代次数,若超过,退出迭代;若未超过,由迭代译码模块20更新可靠度信息进行下一次迭代,具体为,由校验节点对符号向量校验以获取对应变量节点的伴随式信息,将伴随式信息传输至变量节点;由变量节点统计出校验正确的伴随式信息个数和校验失败的伴随式信息个数,根据校验正确和校验失败的伴随式信息个数和更新可靠度信息。
[0104] 预处理模块10中对信道信息以定量化比特数进行非线性量化预处理获得可靠度信息,具体如下:
[0105] 接收信道信息yj,确定量化比特数b,采用公式(10)进行量化预处理:
[0106]
[0107] 其中,0≤j≤n-1,p=0,1,2,...,2b-3,b取值为4,5或6,r为可调的量化解析度参数,yth为正方向的最大接收电平,qj为预处理后的整数可靠度信息,范围在[-(2b-1),+(2b-1)]之间。
[0108] 进一步地,需对量化解析度参数r进行优化,具体如下:对于不同的r值,基于信道信息yj的分布特性,计算信道信息yj的概率分布序列,确定量化解析度参数r的初始量化间隔和终止量化间隔,根据该间隔和概率分布序列得到最优的量化解析度参数r。
[0109] 优选地,译码校验模块40中将符号向量输入效验矩阵进行验证具体如下:用校验矩阵和输入的符号向量进行乘积并模2加,如满足验证条件,则译码成功,反之,则译码失败。
[0110] 本发明能有多种不同形式的具体实施方式,上面以图1-图6为例结合附图对本发明的技术方案作举例说明,这并不意味着本发明所应用的具体实例只能局限在特定的流程或实施例结构中,本领域的普通技术人员应当了解,上文所提供的具体实施方案只是多种优选用法中的一些示例,任何体现本发明权利要求的实施方式均应在本发明技术方案所要求保护的范围之内。
[0111] 本领域普通技术人员可以理解:实现上述装置实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
[0112] 最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

LDPC译码方法及译码器委托购买说明

填写需求表单支付预付款

平台根据需求优化购买方案

确认购买方案支付尾款

平台办理变更等待成功通知

LDPC译码方法及译码器购买流程说明

发起委托,需要先支付100元预付款,委托不成功,全额退返预付款;

平台收到需求后,会在第一时间联系您,给到您最佳购买方案;

您在确认购买方案后,需支付全额专利购买费,预付款可抵扣购买费,专利购买费具体参见下方表格;

平台确认收款后,将帮您办理专利购买、专利过户等全流程手续;

平台代购专利失败,将全额退返专利购买费,包括预付款;

LDPC译码方法及译码器专利购买费用

授权未缴费=专利裸价+著录项变更(200元)+登办费(当年年费+5元印花税)+恢复权利请求费1000元(按实收)+委托服务费(200元)+税金(专利裸价+委托服务费)x6%

已下证=专利裸价+著录项变更(200元)+滞纳金(按实收)+恢复权利请求费1000元(按实收)+委托服务费(200元)+税金(专利裸价+委托服务费)x6%

LDPC译码方法及译码器购买费用说明

专利转让费用

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。更多

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,最快多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

更多专利转让常见问题

动态评分

0.0

没有评分数据
没有评论数据
 
X 顶部大图