专利分类
专利分类

电动汽车充电站新型优化布局方法专利

专利号:201710544960.8

销售价
1500
电动汽车充电站新型优化布局方法专利二维码
  • 累计销量0
  • 浏览次数50
  • 累计评论0
首页

专利名称:电动汽车充电站新型优化布局方法

技术领域:电动汽车,充电站

IPC主分类号:G06Q10/04

申请号:CN201710544960.8

公开日:2017-12-22

说明书

一种电动汽车充电站新型优化布局方法

技术领域

[0001] 本发明属于智能电网领域,涉及一种电动汽车充电站最优规划布局方法。

背景技术

[0002] 全球环境的日益恶化以及石油资源的日趋紧张,使得电动汽车作为新型能源交通工具越来越受到关注,其发展前景广阔,充电站、充电桩以及电池更换站等充电设施,是发展电动汽车所必须的重要配套基础设施。在其他充电设施建设刚刚起步、完备的充电网络还没有形成的情况下,迅速建立一批公用的充电站,可以产生良好的示范效应和广告效应,并推动电动汽车的尽快普及。随着电动汽车迅猛发展,与之相配套的充电站正成为一种新兴产业,电动汽车充电站行业发展潜力巨大。在日本,东电公司与各汽车厂商建立了密切的伙伴合作关系,计划在超市停车场、便利店及邮局等公共场所附近陆续建立充电站;而在法国巴黎,设有几百个充电站,凡重要停车场都设有充电站、配置电动汽车充电的专用插头。如何对电动汽车充电站进行合理布局,使其既方便电动汽车充电者充电,又节省建设成本已经成为城市规划部门、交通部门以及供电企业重点关注的问题。
[0003] 因此,需要一种电动汽车充电站新型优化布局方法以解决上述问题。

发明内容

[0004] 本发明针对现有技术中存在的缺陷,提供一种电动汽车充电站新型优化布局方法。
[0005] 为解决上述技术问题,本发明的电动汽车充电站新型优化布局方法所采用的技术方案为:
[0006] 一种电动汽车充电站新型优化布局方法,包括以下步骤:
[0007] 步骤一、对充电站的选址建立用户-充电站运营成本最小的综合优化模型;
[0008] 步骤二、通过萤火虫优化算法对得到的数学模型进行规划求解,得到用户-充电站运营成本最小的综合优化模型的最优解。
[0009] 更进一步的,步骤一中用户-充电站运营成本最小的综合优化模型通过下式表示:
[0010]
[0011] 式中:L为所建充电站的数量;C1i为充电站i每年的建设成本;C2i为充电站i每年的设备线路损耗以及运行维护成本;C3i为电动汽车用户每年在充电站i充电产生的费用;C4i为每年用户前往充电站进行充电所消耗的费用;
[0012] 其中,充电站i每年的建设成本C1i通过下式表示:
[0013]
[0014] 式中:ni为建设充电站i所需要安装的充电桩数量;d为其整套设备的单价,fi为充电站i基础设施的建设成本;w为充电站L的设计寿命,r为贴现率;
[0015] 充电站i每年的设备线路损耗以及运行维护成本通过下式表示:
[0016] C2i=ni·t·365·p1(Ca+Cb·λ+Cc·λ)+(ni·d+fi)·α
[0017] 式中:t为充电站每天的平均充电时间,λ为同时进行充电的充电桩占所有充电桩的比率,p1为充电站的用电单价,Ca、Cb、Cc分别表示设备零部件的磨损消耗、线路损耗、充电损耗折算到单个充电桩上的损耗值;
[0018] 电动汽车用户每年在充电站i充电产生的费用通过下式表示:
[0019] C3i=p2·Qi·365
[0020] 式中:p2为用户的充电单价,Qi为充电站i平均每天的充电需求;
[0021] 每年用户前往充电站进行充电所消耗的费用的数学表达式为:
[0022]
[0023] 式中:M为充电站i的充电点的数量;sij为需求点j到充电站i的距离;qj为每天充电需求点j处需要充电的汽车数量;h为电动汽车平均单位电量的行驶路程;v为电动汽车的平均行驶速度;g为用户的平均出行时间价值。
[0024] 更进一步的,其中,充电站i平均每天的充电需求Qi通过下式计算得到:
[0025]
[0026] 其中,Z为充电站i服务区域内节点的数量,设节点z处有u条道路与其相连,qi为T时间段内z节点处的充电需求, T为每天的充电时间, ze表示在t时刻与节点z相连的第e条道路上的交通流量密度,y为电动汽车的平均容量,μ为车流中需要充电的电动汽车所占的比例,zt表示节点z在t时刻的交通流量密度。
[0027] 更进一步的,建设充电站i所需要安装的充电桩数量ni通过下式计算得到:
[0028]
[0029] 式中:Qi为充电站i平均每天的充电需求,θ为充电站i的充电容量裕度;P为单个电桩的充电功率;η为充电桩的充电效率,t为充电站每天的平均充电时间,λ为同时进行充电的充电桩占所有充电桩的比率。
[0030] 更进一步的,所述综合优化模型的约束条件为:
[0031]
[0032]
[0033] Dmin≤dij≤Dmax
[0034] 式中:Mi为备选站址集合,N为备选充电站站址的数量,其中,hz为0或1的变量,表示充电站与用户之间的分配关系,当hz=1时,表示节点z被选为充电站址,否则hz=0,表示节点z未被选为充电站址;dij为充电站i与j之间的距离,Dmin和Dmax分别代表充电站之间的最小间距和最大间距。
[0035] 更进一步的,步骤2)中通过萤火虫优化算法对得到的数学模型进行规划求解包括以下步骤:
[0036] (1)、对每个萤火虫赋予初始值,每只萤火虫的荧光素是相同的,均为l0,同时感知半径也是相同的,均为r0;
[0037] (2)、以随机的方式给每一只萤火虫i赋予其在优化模型搜索空间中的位置,其中,i=1,2...,n;
[0038] (3)、根据下式计算荧光素更新:
[0039] li(t)=(1-ρ)li(t-1)+γJ(xi(t))
[0040] 式中:J(xi(t))为每只萤火虫i在t时刻位置xi(t)对应的目标函数值;li(t)表示t时刻第i只萤火虫的荧光素浓度;ρ为荧光素挥发系数;γ为荧光素增强因子;
[0041] 把上式得到的第t次迭代的萤火虫i的位置xi(t)所对应的目标值J(xi(t))转化为所需要的荧光素值li(t);
[0042] (4)、每只萤火虫在感知范围内,即与其距离为 其中, r0为感知半径,且为事先给定的常数,选择优于自身的个体来组成一个集合Ni(t),称为邻域集;
[0043] (5)、萤火虫i向Ni(t)中的萤火虫j移动的概率pij(t)通过下式计算得到:
[0044]
[0045] 其中,Ni(t)为邻域集: 其中, r0为萤火虫个体的感知半径;
[0046] (6)、确定萤火虫i的移动方向,通过步骤(5)的概率pij(t),利用轮盘赌选择萤火虫j,再利用下式对其位置进行更新:
[0047] 其中,其中,s为移动步长;
[0048] (7)、根据下式对感知半径进行调整:
[0049]
[0050] 式中:r0为初始感知半径,β表示邻域变化率;nt表示邻居阀值;|Ni(t)|表示邻居集合Ni(t)的元素数目,即邻居的个数;
[0051] (8)、重复步骤(4)-(7),直到得到综合优化模型的最优解,并输出结果。
[0052] 引入了萤火虫优化算法进行模型的求解分析,可以得到问题的最优解,从而不会陷入局部最优。
[0053] 更进一步的,还包括步骤三,通过模拟仿真验证萤火虫优化算法的可靠性。通过对某地区的电动汽车运行的具体实例进行仿真试验,结果表明利用萤火虫优化算法对所建立的社会综合效益成本模型进行求解,可以快速地收敛到最优解。在成本最小的条件下满足实际运行情况,有效地求解电动汽车充电站选址优化问题。
[0054] 有益效果:本发明的电动汽车充电站新型优化布局方法:所建立的数学模型不仅考虑了充电站的盈利目标,还对用户成本进行了综合全面的分析,建立综合社会成本最小的最优站址的规划模型。使用萤火虫优化算法思想,使求解的效率更高,能够快速收敛到最优解,有效避免陷入局部最优的问题。。

附图说明

[0055] 图1为一种电动汽车充电站新型优化布局方法流程图;
[0056] 图2为输出综合社会成本最小对应的规划方案流程图;
[0057] 图3为萤火虫优化算法收敛曲线图;
[0058] 图4为利用萤火虫优化算法计算得到的充电站选址分布图。
[0059] 图1中,1为建立社会综合效益最小成本模型,2为利用萤火虫优化算法求解计算,3为通过实例仿真验证萤火虫优化算法。

具体实施方式

[0060] 下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
[0061] 本发明的实现具体分为下面三个步骤:
[0062] 步骤一、以充电站与用户之间的对应关系为约束条件,对充电站最优规划模型进行全面、充分地分析,建立综合社会成本最小的最优站址规划模型。
[0063] 步骤二、利用萤火虫优化算法针对在步骤一中建立的数学模型进行求解,得到问题最优解。
[0064] 步骤三、使用实际算例进行仿真分析,验证使用萤火虫优化算法的新型优化布局方法的有效性与正确性。
[0065] 进一步,在步骤一中,首先建立数学建模。其中所涉及到的电动车充电站站址选择问题可以描述为在满足距离上限与电量需求的情况下,在备选站址中选择L个地点,以合理的规模设立充电站,为周围的电动汽车用户提供电源,使得在选出点建立的电动汽车充电站成本(包括前期建筑成本和实际运营成本)最低。本发明在充电站成本模型的基础上考虑用户成本,构建社会综合效益成本模型。综合考虑充电站与用户之间的利益平衡,以此构建模型目标函数,其数学表达式如下:
[0066]
[0067] 式中:L为所建充电站的数量;C1i为充电站i每年的建设成本;C2i为充电站i每年的设备线路损耗以及运行维护成本;C3i为电动汽车用户每年在充电站i充电产生的费用;C4i为每年用户前往充电站进行充电所消耗的费用。
[0068] 充电站i每年的建设成本数学表达式如下:
[0069]
[0070] 式中:ni为建设充电站i所需要安装的充电桩数量;d为其整套设备的单价,fi为充电站i基础设施的建设成本;w为充电站L的设计寿命,r为贴现率。
[0071] 充电站每年的设备线路损耗以及运行维护成本主要包括设备零部件等的磨损消耗、线路损耗、充电损耗、检修运营费用等。由于检修运营费用一般不确定,可以根据其占初始投资一定的比值计算得出,令比值为a,那么充电站i每年的设备线路损耗以及运行维护成本可表示如下:
[0072] C2i=ni·t·365·p1(Ca+Cb·λ+Cc·λ)+(ni·d+fi)·α
[0073] \*MERGEFORMAT  (3)
[0074] 式中:t为充电站每天的平均充电时间,λ为同时进行充电的充电桩占所有充电桩的比率,p1为充电站的用电单价,Ca、Cb、Cc分别表示设备零部件等的磨损消耗、线路损耗、充电损耗折算到单个充电桩上的损耗值。
[0075] 电动汽车用户每年在充电站i充电产生的费用数学表达式为:
[0076] C3i=p2·Qi·365\*MERGEFORMAT  (4)
[0077] 式中:p2为用户的充电单价,Qi为充电站i平均每天的充电需求。
[0078] 每年用户前往充电站进行充电所消耗的费用不仅包括用户前往充电站进行充电的损耗费用,还包括用户充电过程的时间价值。因此,每年用户前往充电站进行充电所消耗的费用的数学表达式为:
[0079]
[0080] 式中:M为充电站i的充电点的数量;sij为需求点j到充电站i的距离;qj为每天充电需求点j处需要充电的汽车数量;h为电动汽车平均单位电量的行驶路程;v为电动汽车的平均行驶速度;g为用户的平均出行时间价值,可依据充电需求点处居民的平均收入估算得出。
[0081] 电动汽车的充电需求可通过道路上的交通流量估算得出。设节点z处有u条道路与其相连,ze表示在t时刻与节点z相连的第e条道路上的交通流量密度,那么节点z在t时刻的交通流量密度为:
[0082]
[0083] 计算一个路段的交通流量密度应当取某一时刻从该路段同一个方向流入或流出该节点的车流量。那么T时间段内金z节点处的充电需求为:
[0084]
[0085] 式中:y为电动汽车的平均容量,μ为车流中需要充电的电动汽车所占的比例。如果充电站i服务区域内有Z个节点,那么充电站i在T时间内的充电需求为:
[0086]
[0087] 那么为了满足充电站i服务范围内所有电动汽车的充电需求,应该安装的充电桩的数量ni的数学表达式如下:
[0088]
[0089] 式中:θ为充电站i的充电容量裕度;P为单个电桩的充电功率;η为充电桩的充电效率。
[0090] 上述模型的约束条件为:
[0091]
[0092]
[0093] Dmin≤dij≤Dmax\*MERGEFORMAT  (12)
[0094] 式中:Mi为备选站址集合。式(10)规定了备选充电站站址的数量为N,其中hz为0-1变量,表示充电站与用户之间的分配关系,当hz=1时,表示节点z被选为充电站址,否则hz=0。式(12)中dij为充电站i与j之间的距离,满足两个充电站的最大与最小间距,保证了充电站规划的合理服务范围。
[0095] 进一步,在步骤二中,引入了萤火虫优化算法,可以快速收敛到最优解,找到最优化布局方法。通过模拟萤火虫发光的群体行为而设计的萤火虫算法,基本的基本假设是:萤火虫发光亮度跟它们当前的位置有关,位置越好,发出的光亮度越高。因此,此时它有更大的吸引度,从而能吸引其范围内亮度不如它的其他萤火虫向其靠拢,而且它们之同的相对亮度与吸引度和距离成反比,这一点可以通过光的传播具有衰減来给于解释。在算法的实现中,利用问题的目标值来来衡量人工萤火虫的位置的好坏,而用迭代式子模拟萤火虫的搜索飞行移动,以此构造算法,逐步向问题的最优解移动,达到优化目的。
[0096] GSO算法是在优化模型的搜索空间中随机产生规模为n个人工萤火虫,并且给每只萤火虫赋予一定的荧光素li。每只萤火虫的决策半径 的大小决定了它的决策域,而且是通过荧光来相互传递信息与相互影响。萤火虫荧光素的大小取决于它的位置对应的目标值,目标值越是优,则具有越大的荧光素;萤火虫越亮也说明该只萤火虫所处于越好的位置,这时它对应的目标值越好,反之则差。影响决策域半径的是领域内萤火虫的数量,萤火虫密度低的,加大决策域半径;密度高的,缩小半径。其目的是在密度低时也能搜索多一点邻居。算法计算后,人工萤火虫大多在几个位置上聚集。算法刚开始初始化是赋予每只萤火虫的荧光素是相同的,均为l0,同时感知半径也是相同的r0。
[0097] 算法主要包括以下几个重要环节:
[0098] (1)荧光素更新
[0099] li(t)=(1-ρ)li(t-1)+γJ(xi(t))
[0100] \*MERGEFORMAT  (13)
[0101] 式中:J(xi(t))为每只萤火虫i在t时刻位置xi(t)对应的目标函数值;li(t)表示t时刻第i只萤火虫的荧光素浓度;ρ为荧光素挥发系数;γ为荧光素增强因子。
[0102] (2)概率选择
[0103] 选择移向邻域集Ni(t)内个体j的概率为pij(t):
[0104]
[0105] 其中,Ni(t)为邻域集:
[0106]
[0107] 上式中, r0为萤火虫个体的感知半径。
[0108] (3)位置更新
[0109]
[0110] 其中,s为移动步长。
[0111] (4)动态决策域半径更新
[0112]
[0113] 式中:β表示邻域变化率;nt表示邻居阀值(控制萤火虫的邻居数目);|Ni(t)|表示邻居集合Ni(t)的元素数目(即邻居的个数)。
[0114] 萤火虫算法执行的步骤如下:
[0115] (1)程序开始,给每个参数赋予初始值。
[0116] (2)以随机的方式给每一只萤火虫i(i=1,2...,n)赋予其在优化模型搜索空间中的位置。
[0117] (3)把式(13)得到的第t次迭代的萤火虫i的位置xi(t)所对应的目标值J(xi(t))转化为后面计算所需要的荧光素值li(t)。
[0118] (4)每只萤火虫在感知范围内,即与其距离小于其 r0是事先给定的常数,称感知半径)的范围内,选择优于自身的个体来组成一个集合Ni(t),称为邻域集。
[0119] (5)萤火虫i向Ni(t)中的萤火虫j移动的概率pij(t)通过式(14)计算得到。
[0120] (6)确定萤火虫i移动方向,通过上一步的概率pij(t),利用轮盘赌选择萤火虫j,再利用式(15)对其位置进行更新。
[0121] (7)依据式(16)来调整、更新感知半径。
[0122] (8)判断是否满足结束条件,若满足则执行(9),若不然则转(4)。
[0123] (9)输出结果,程序结束。
[0124] 进一步,在步骤三中,以某地的电动汽车运行情况为例,采集此地区共33个电动汽车用户的坐标,由于每个电动汽车参数存在差别,其单位路程消耗电量也各不相同,由所建立的模型可知,充电站规划模型为多峰值函数模型,当充电站的数量不同时会有不同的运行结果:当充电站的数量增大时,每个充电站的容量降低,相应的运行成本降低,但是单台充电机的造价成本又逐渐上升;相反,充电站的数量较少时,单台充电机的造价成本又逐渐下降,可见,此充电站的规划研究,应该在成本与需求下取得平衡,得到规划最优解。
[0125] 假设车流中需要充电的电动汽车所占的比例μ为12%,平均容量y为45kW·h,单个充电桩的充电功率P为90kW,充电容量裕度θ为20%,充电桩的充电效率η为0.95,电量电价按照0.6元/kW·h计算,电动汽车的平均行驶速度v为30km/h,根据该区域内的用户收入估算用户的平均出行时间价值g为20元/h。以及用户位置及各电动汽车平均百公里路程消耗电量ki见表1所示。
[0126] 结合站址最优规划模型与萤火虫算法,设置算法的参数为:种群规模为100,记忆库容量为10,迭代次数为100,交叉概率为0.5,变异概率为0.3,多样性评价参数设为0.98。
[0127] 从萤火虫算法寻优过程图中可以看出,GSO在迭代到20代左右即可达到平衡状态,效率比较高。充电站坐标、数量以及每个充电站的充电桩数量在模型分析下的最优规划结果见表2所示。而充电站运行以及用户的成本计算结果见表3所示。
[0128] 表1用户位置及电动汽车参数
[0129]
[0130] 表2充电站坐标及数量最优规划结果
[0131]
[0132] 表3充电站以及用户成本
[0133]  C1 C2 C3 C4 C
GSO 345.74 328.55 1763.60 76.43 2514.32
[0134] 从表2、表3的结果可得,萤火虫算法可以快速地收敛到最优解,在成本最小的条件下满足实际运行情况,能有效解决电动汽车选址优化问题。

电动汽车充电站新型优化布局方法委托购买说明

填写需求表单支付预付款

平台根据需求优化购买方案

确认购买方案支付尾款

平台办理变更等待成功通知

电动汽车充电站新型优化布局方法购买流程说明

发起委托,需要先支付100元预付款,委托不成功,全额退返预付款;

平台收到需求后,会在第一时间联系您,给到您最佳购买方案;

您在确认购买方案后,需支付全额专利购买费,预付款可抵扣购买费,专利购买费具体参见下方表格;

平台确认收款后,将帮您办理专利购买、专利过户等全流程手续;

平台代购专利失败,将全额退返专利购买费,包括预付款;

电动汽车充电站新型优化布局方法专利购买费用

授权未缴费=专利裸价+著录项变更(200元)+登办费(当年年费+5元印花税)+恢复权利请求费1000元(按实收)+委托服务费(200元)+税金(专利裸价+委托服务费)x6%

已下证=专利裸价+著录项变更(200元)+滞纳金(按实收)+恢复权利请求费1000元(按实收)+委托服务费(200元)+税金(专利裸价+委托服务费)x6%

电动汽车充电站新型优化布局方法购买费用说明

专利转让费用

专利买卖交易资料

Q:办理专利转让的流程及所需资料

A:专利权人变更需要办理著录项目变更手续,有代理机构的,变更手续应当由代理机构办理。

1:专利变更应当使用专利局统一制作的“著录项目变更申报书”提出。

2:按规定缴纳著录项目变更手续费。

3:同时提交相关证明文件原件。

4:专利权转移的,变更后的专利权人委托新专利代理机构的,应当提交变更后的全体专利申请人签字或者盖章的委托书。更多

Q:专利著录项目变更费用如何缴交

A:(1)直接到国家知识产权局受理大厅收费窗口缴纳,(2)通过代办处缴纳,(3)通过邮局或者银行汇款,更多缴纳方式

Q:专利转让变更,最快多久能出结果

A:著录项目变更请求书递交后,一般1-2个月左右就会收到通知,国家知识产权局会下达《转让手续合格通知书》。

更多专利转让常见问题

动态评分

0.0

没有评分数据
没有评论数据
 
X 顶部大图